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Preface 

 
This paper develops a methodology for weather normalizing agency-
level production data, required for verifying compliance with the 
Memorandum of Understanding under the GPCD Compliance Option.  It 
may also be useful for testing compliance with the SBx7-7 legislation, 
although this new legislation has many more components which will be 
more fully developed in the future by the California Department of Water 
Resources. 
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Executive Summary 

Council members that opt to reach their water conservation goals using 
the GPCD Compliance Option must test compliance by tracking annual 
consumption in terms of gallons per capita per day (GPCD).  Over time, a 
supplier’s GPCD may change because of a combination of factors 
including, conservation, water rates, technology, economic conditions, 
customer tastes, and weather.  The GPCD Compliance Option only allows 
for adjustments to GPCD due to unusual weather since weather is 
beyond a water supplier’s control.  Most of the other factors are partially 
within a supplier’s sphere of influence and in fact represent tools that can 
be used to reduce GPCD over time.  Thus, no need arises in principle for 
normalizing GPCD on account of these non-weather related factors.  
  
This study was undertaken to develop a weather-normalization 
methodology, and in the process address several questions including: (1) 
what data source should suppliers use for obtaining reliable weather 
information; (2) how should one account for weather’s impact upon 
water demand, and the variation in this relationship across suppliers; and 
(3) should the preferred metrics for capturing weather be reference ETo 
and rainfall or temperature and rainfall?  Data from a total of 18 diverse 
suppliers were assembled in two phases to address these questions. 
 
Regarding the first question, there was a great deal of interest in assessing 
whether PRISM can serve as a one-stop shop for weather data?  The 
analyses presented here suggest a clear yes to this question.  PRISM is a 
powerful new tool developed by the DWR that can provide temperature, 
rainfall, and reference ETo data from 1990 into the future for all regions of 
California.  Extensive comparisons between PRISM data and data from 
other sources, such as NOAA and CIMIS, found them to be highly 
correlated.  For example, temperature and rainfall from NOAA and 
PRISM show a correlation of 0.96 and 0.94, respectively, across the 
suppliers included in this study (Section 3). 
 
The second key question that this study had to deal with was accounting 
for variation in weather response across different suppliers.  From the 
outset we recognized that each supplier’s mix of weather-sensitive and 
weather-insensitive end uses is different; therefore, the impact of weather 
on total production cannot be identical across suppliers.  Suppliers, 
however, do not always have good data to isolate these two types of end 
uses, so a weather normalization scheme that relies on the availability of 
such disaggregate data is likely to run into difficulty.  Alternatively, one 
could collect supplier characteristics that correlate with weather-sensitive 
end-uses, such as irrigated landscape per capita, intensity of commercial 
air-conditioning, and so on, but these too are difficult to obtain in 
practice.  Thus, we focused on a supplier’s peaking factor as a way of 
scoring how suppliers rank relative to one another in terms of the 
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proportion of total use that is accounted for by weather-sensitive end 
uses.  For peaking factor to work as a scoring variable, however, it must 
have a consistent relationship with the variation in weather impacts 
across suppliers. 
 
To test whether such a relationship exists we first made sure that our 
sample of 18 suppliers exhibited a range of peaking factors that matches 
California’s as a whole.  California has water suppliers with summer-to-
winter monthly production ratios (peaking factor) extending to 5 and a 
few beyond 5.  Our sample includes suppliers with peaking factors that 
range from a minimum of 1.6 to a maximum of 6, from different locations 
in the state (coastal, inland, north, south, central).  
  
Section 4 develops a theoretical model which suggests that weather’s 
impact should scale nonlinearly with respect to a supplier’s peaking 
factor.  Expectations from this theoretical model were extensively tested 
and found to corroborate well with the data.  Taken together, all of these 
empirical findings suggest that using a supplier’s peaking factor to 
implicitly score a supplier’s mix of weather sensitive and insensitive uses 
is a viable modeling strategy—and therefore a viable weather 
normalization strategy.  Once this insight was tested and established it 
was relatively straightforward to pool data across all 18 suppliers and 
estimate peaking-factor dependent weather impacts with a high level of 
statistical precision. 
 
Given the key role that peaking factor plays in our methodology, for 
which working with monthly production data is necessary, it should be 
self-evident that weather normalization at the annual, instead of monthly 
level, is unlikely to succeed.  There was interest in this question—can 
weather normalization work at the annual level—since it would 
considerably simplify the data collection requirements and the 
computations involved.  Our analyses indicate that this is not a feasible 
option.     
 
Finally, we performed several sensitivity analyses to determine whether 
reference ETo and rainfall or temperature and rainfall should be the 
preferred metrics for capturing weather.  While both approaches yield 
comparable results, we feel that weather normalization based upon 
rainfall-adjusted reference ETo is likely to yield more reliable results than 
one based upon temperature and rainfall.  While testing the relationship 
between supplier-specific weather impacts and peaking factors, we found 
it to be tightest when weather impacts were captured using rainfall-
adjusted reference ETo, less so when these impacts were captured 
separately using temperature and rainfall.  Thus a methodology that does 
not require estimating the independent effect of rainfall on production is 
likely to be more reliable, and the weight of the empirical evidence 
presented in Section 4 certainly supports this assertion. 
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1. Introduction 

 
Council members that opt to reach their water conservation goals using 
the GPCD Compliance Option must test compliance by tracking annual 
consumption in terms of gallons per capita per day (GPCD).  Under this 
option, suppliers need to report their GPCD every two years with the 
overall goal of reducing their 2018 GPCD by 18% relative to their baseline 
GPCD. 
 
Over time, a supplier’s GPCD may change because of a combination of 
factors including, conservation, water rates, technology, economic 
conditions, customer tastes, and weather.  The GPCD Compliance Option 
only allows for adjustments to GPCD due to unusual weather since 
weather is beyond a water supplier’s control.  It is easy to see that 
weather may be too hot or too cold during a compliance year relative to 
the baseline years, which must be taken into account while assessing 
compliance.  Most of the other factors are partially within a supplier’s 
sphere of influence and in fact represent tools that can be used to reduce 
GPCD over time.  Thus, no need arises in principle for normalizing GPCD 
on account of these non-weather related factors.  The question about 
unusual economic conditions, however, remains worrisome.  The current 
economic environment has depressed water demand in most areas.  If 
these conditions prevail for an extended period it may lull suppliers into 
believing they are easily meeting their interim targets, only to be 
unpleasantly surprised as water demands rebound later in the decade. 
 
That said this study only focuses on how to normalize GPCD for unusual 
weather.  The question about how to deal with unusual economic 
conditions is beyond this study’s scope.  Note, that while we commonly 
speak of weather normalizing GPCD, weather only influences water 
demand, not population.  Thus, throughout this report, when we speak of 
weather normalizing GPCD, what we mean is weather normalizing 
production first—production is used as a proxy for demand—then 
expressing these normalized production data in GPCD terms. 
 

1.1 Key Study Questions  

This study was undertaken to develop a weather-normalization 
methodology, and in the process address several questions including: 
 

1. Does the source of weather data matter? 
2. Is weather normalization of aggregate annual production data 

feasible, or are disaggregate monthly data necessary? 
3. Is there a performance difference between using reference ETo 

and rainfall over temperature and rainfall to perform the weather 
normalization? 
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4. To what extent does water demand’s response to weather vary 
across suppliers?   
 

This study proceeded in two phases.  In phase I, the California Urban 
Water Conservation Council (CUWCC) provided production data going 
back in time for 10 California water suppliers to develop and test an 
appropriate weather normalization methodology.  During the initial 
analyses, the composition of this initial sample was discovered to be 
somewhat skewed toward suppliers with the summer-to-winter monthly 
production ratios (peaking factor) under 3.  California includes suppliers 
with monthly peaking factors up to 5, and some beyond 5. 
 
Peaking factor is of particular interest to us as a modeling variable since 
we do not have detailed information about supplier characteristics that 
correlate with weather-sensitive end uses.  In the absence of detailed end-
use characteristics, a supplier’s peaking factor becomes an easy-to-
observe proxy for the proportion of total demand that is accounted for by 
irrigation and other weather-sensitive end-uses, such as industrial 
chillers.  By characterizing suppliers according to their respective peaking 
factors, a general weather normalization methodology can in principle be 
developed that works for different types of suppliers (for example, those 
located on the coast versus inland, those with greater or lesser landscape 
per capita, or those with greater or lesser CII use per capita).  Do the data 
support use of peaking factors as a modeling input?  This is a key 
question, addressed later.  We are, however, not advocating the use of 
peaking factors as a proxy for water use efficiency.  Peaking factors 
contain useful information about the weather-sensitive portion of total 
demand, but they are weakly correlated with the level of water use 
efficiency achieved by a supplier.   
 
The phase I sample was used extensively to principally address the first 
question, and to a lesser extent the second and third questions.  This 
initial sample was then supplemented in Phase II with 9 additional 
suppliers with peaking factors extending to 6, to address more fully 
questions two through four. 
 
For the purpose of this study, we have suppressed the identity of the 
suppliers that kindly volunteered their data.  Since these suppliers may 
improve their production and population data to make them consistent 
with Department of Water Resources’ (DWR) data preparation 
guidelines1, and also may choose a different set of years to define their 
baseline, their officially reported baseline GPCD estimates may differ 
somewhat from ours.  This is not a problem.  But, we thought it best to 
avoid confusion that competing published estimates may generate. 

                                                 
1
 See “Methodologies for Calculating Baseline and Compliance Urban Per Capita Water 

Use,” issued by the California Department of Water Resources.  
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1.2 Establishing Baseline GPCD 

To weather normalize consumption in the compliance years, one must 
have a benchmark to normalize to—in other words, one must be able to 
define a given area’s normal or average weather.  According to the GPCD 
Compliance Option, water retailers need to select 10 consecutive years of 
production and population data (1997 through 2006) to establish their 
baseline; exceptions are permitted for suppliers that signed the MOU 
prior to 1997 as outlined in the MOU Compliance Policy.  
 
For the purpose of compliance then, the benchmark becomes the 
“average” weather that prevailed during the years that enter into the 
determination of the baseline GPCD.  Some suppliers may have weather 
data going back several decades, but not all these years should be used to 
establish “average” weather, only the years that enter the baseline GPCD 
calculation. 
 

1.3 Council’s GPCD Compliance Option Versus SBx7-7 

The Council’s GPCD Compliance Option has many similarities, but also 
some differences, with the SBx7-7 legislation’s compliance approach.  The 
latter is covered in detail in DWR’s Technical Methodologies document 
cited earlier.  Key differences are as follows: 

 SBx7-7 allows suppliers to choose between one of four methods to 
select their final (2020) targets.  The Council allows only one 
method, an 18% reduction in GPCD by 2018 relative to the 
baseline. 

 SBx7-7 requires compliance testing in the interim year 2015 and 
final year 2020, while the Council requires GPCD reporting every 
other year. 

 SBx7-7 offers a bit more flexibility with respect to time period and 
number of years to be included in the baseline. 

 SBx7-7 permits weather normalization of compliance year GPCD, 
just as the Council does, but the former additionally permits 
adjustment to compliance year GPCD for unusual economic 
conditions. 

 SBx7-7 permits suppliers to form a regional group for the purpose 
of compliance testing, while the Council’s GPCD Compliance 
Option is available only to individual suppliers.  
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1.4 Sources of Weather Data 

Reliable weather data remains a key factor in any GPCD normalization 
methodology (in addition to having reliable production and population 
data).  At the beginning of this project, we assumed that good quality 
weather data would be available for all the test agencies, but in fact this 
proved to be a challenge.  It is worth dwelling a bit on this subject. 
 
It is well known that saturation of CIMIS stations in urban areas is 
patchy.  To overcome this shortcoming, DWR has developed a tool called 
SpatialCIMIS, which presumably can provide model-interpolated 
reference ETo information for any part of California.  We had expected to 
use data from this tool to fill gaps in the coverage of the CIMIS station 
network.  But, unfortunately, we learned that this tool only goes back to 
2003, insufficient to match the 10 year baseline that extends back into the 
mid-1990s. 
 
DWR also has another tool called PRISM that provides historical model 
interpolated weather data including temperature, rainfall, and reference 
ETo for each 4x4 kilometer tile in the State of California.  There are 
slightly over 26,000 such tiles.  Reference ETo data available from PRISM, 
however, are based on the Hargreaves-Samani (HS) model that uses only 
temperature and latitude to predict reference ETo.  On the other hand, 
reference ETo available from CIMIS is based upon the Penman-Montieth 
(PM) model that includes solar radiation, wind speed and relative 
humidity in addition to temperature.   Because the HS model only uses 
temperature and latitude to generate reference ETo, the PRISM tool 
developers compared both the HS and PM model estimates for tiles 
where both were available to determine correction factors that were then 
used to convert HS ETo estimates into PM-equivalent ETo estimates. 
 
The PRISM data at present are available from 1990 through 2010.  DWR is 
planning to extend the PRISM data to present time and also to develop a 
user interface that would allow any user in the state to download weather 
data appropriate to their service area. 
 
To assess whether PRISM can serve as a one-stop shop for weather data, 
we compared the efficacy of these data with weather data obtained from 
other sources as well.  A key source of temperature and rainfall data is 
the National Oceanic and Atmospheric Administration’s (NOAA) data 
archives available through the Western Regional Climate Center 
(http://www.wrcc.dri.edu/).  While the coverage of these stations 
appears to be very impressive on a map, causing one at first blush to 
assume that a suitable station could probably be found for just about 
every California water supplier, many stations are plagued by missing or 
incomplete data.  So obtaining reliable weather data from this source is 
challenging, which is why a one-stop source, such as PRISM remains so 
attractive.   But, how good are the PRISM data? 

http://www.wrcc.dri.edu/
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To assess how sensitive weather normalization is with respect to the 
source of weather data, we assembled temperature and rainfall data for 
all the 10 Phase I suppliers using NOAA stations, sometimes 
supplemented with data from close-by CIMIS stations to fill in bad or 
missing NOAA data.  The PRISM based temperature, rainfall, and 
reference ETo data are of course available for all Phase I and II suppliers.  
Thus, first we use Phase I suppliers to assess how weather data correlate 
across alternative data sources.  Then the full sample is employed, using 
PRISM weather data, to assess water demand’s relationship with 
weather, and to assess how this relationship varies across suppliers with 
different peaking factors.   
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2. Analytic Approach 

2.1 Key Steps 

The purpose of weather normalizing compliance-year GPCD is to ask the 
following question—what would GPCD have been during the compliance 
year had weather been the same as it was on average during the baseline 
period?  Answering this question required us, and will require the 
Council to work through the following six steps for those suppliers that 
choose the GPCD Compliance Option: 
 

1. Select a baseline period.  Suppliers would have to furnish monthly 
(potable) water production data for their baseline period (1997 
through 2006 per the MOU).  

2. Estimate average weather for the baseline period.  Suppliers 
would have to select and inform the Council about which PRISM 
tiles they wish to use for capturing weather in their service area. 

3. Use models developed in this study to estimate how production 
responds to deviations in weather.  The Council would complete 
this step.  No additional data from suppliers would be required. 

4. Estimate weather deviations during the compliance year relative 
to the baseline.  The Council would complete this step based upon 
PRISM tiles selected in Step 2.  

5. Combine information from steps 3 and 4 to derive weather 
normalized production during the compliance year.  The Council 
would complete this step.  

6. Divide compliance-year production derived in step 5 by 
population and days in the year to derive weather-normalized 
GPCD.  The Council would complete this step. 

 
The main goal of this study is Step 3—estimating the strength of the 
relationship between production and weather, which can then be used to 
derive weather-normalized production from actual production2.   
 
As discussed in detail later, the annual model was not successful in 
detecting a statistically significant relationship between production and 
weather.  Therefore, weather normalization of annual production, while 
attractive for its simplicity, was determined to be infeasible. 
 

2.2 Modeling Strategy 

To reliably estimate how production reacts to changes in weather one 
must also account for other factors that influence production within a 
year, and over the course of many years.  Key factors here include season 

                                                 
2
 The Council has also prepared guidelines for suppliers to follow that wish to undertake 

the above six-step approach, including Step 3, on their own. 
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and population which we are able to account for (the former only in the 
monthly models).  The explanatory power of just these three factors 
(season, population, and weather deviation relative to the baseline) is so 
high that it is unlikely that important confounding factors remain 
unaccounted for.  However, to test for this possibility we included time 
trend variables for each agency to capture non-cyclical time trends in 
production not captured by population.  These trend variables added no 
significant explanatory power to the models. 
 
The models are estimated using 10 years of data prior to 2005.  It is not 
theoretically necessary to restrict these models to only 10 years.  
Obtaining statistically significant correction factors was not a problem 
using 10 years of data.  Including years beyond what is necessary to 
obtain statistical significance increases the risk of introducing 
unaccounted for time-varying confounding factors, so we did not.  In any 
event, including data past 2007 for model estimation was decidedly out of 
the question because of the economic recession.  What we have instead 
done is use the years 2006, 2007 and 2008 to forecast the outcome of 
weather normalization and to conduct sensitivity analyses.  We derive 
weather-normalized GPCDs for each agency in these years using the 
temperature and rainfall approach and contrast how the results change 
when normalization is attempted using reference ETo and rainfall.   
 
For the statistically inclined, Appendix A provides greater detail about 
the model structure, results of the statistical estimation, and sensitivity 
analyses.  Our analyses exclude Supplier #8 because their production and 
population data exhibit year-over-year anomalies that the supplier was 
unable to explain or fix.  Study results are not sensitive to the exclusion of 
this supplier, however. 
 
But first we have to establish the efficacy of PRISM weather data.  This 
was done by working with data collected from phase I suppliers, for 
whom we assembled weather data from both NOAA/CIMIS stations as 
well as from PRISM. 
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3 Assessing Efficacy of PRISM Data 

3.1 Phase I Test Suppliers 

Table 1 shows the data we received from each of the Phase I suppliers, 
and the steps we had to undertake to create a temperature and rainfall 
data series from sources other than PRISM for the purpose of comparison. 
 
In most cases, we used the period 1995 through 2004 to set the baseline.   
For developing and testing a weather normalization methodology, this is 
acceptable even though suppliers may make alternative choices for 
official reporting to the CUWCC or DWR.  A couple of suppliers did not 
give us data going back to 1995.  For these suppliers, baseline GPCDs 
could not be estimated using 10 years of production data, which may 
affect the accuracy of their baseline estimates, but otherwise posed no 
modeling difficulty. 
 
With respect to weather data we have tapped three sources, NOAA, 
CIMIS, and PRISM.  Since PRISM offers full coverage of the state, we 
have temperature, rainfall, and reference ETo from this source for all 
sampled suppliers, which is the main reason why this data source is so 
appealing.  From the NOAA archives, we were able to piece together an 
independent temperature and rainfall data series for 9 suppliers.  Bad and 
missing weather data in the primary NOAA station were imputed using 
data from other close-by NOAA or CIMIS station(s).  In the case of one 
supplier, however, we were unable to obtain any NOAA data at all so we 
relied only on CIMIS to obtain temperature and rainfall data.  CIMIS and 
NOAA temperature and rainfall data are highly correlated. 
 
Appropriate CIMIS stations could be identified only in the case of 4 out of 
the 10 phase I suppliers, proof of CIMIS’s patchy urban coverage and 
unsuitability as a source of consistent weather data on a statewide basis.   
 
The good news is that monthly temperature and rainfall data from 
NOAA and PRISM appear to be highly correlated—0.96 and 0.94 
respectively.  This strengthens the a priori case for relying on PRISM data 
for the weather normalization of production data.  
 
Table 2 shows the agency-by-agency correlation between monthly NOAA 
and PRISM weather data, which are all very good.  
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Table 1 Phase I data structure and quality 

Supplier 

ID 

Type of 

Data 

Baseline 

Period 

CIMIS 

data 

available? 

NOAA 

data 

available? 

PRISM 

data 

available? 

Comments 

1 Monthly 1998-2004 No Yes Yes Agency did not provide data going back to 1995.  Therefore, only 7 years 

enter baseline GPCD determination.  Missing weather data in primary NOAA 

station imputed using secondary station.   

2 Monthly 1995-2004 Yes No Yes ALL appropriate NOAA stations had unsalvageable data problems.  CIMIS 

station used instead. 

3 Monthly 1995-2004 Yes Yes Yes Good correlation between CIMIS and NOAA temperature and rainfall data. 

4 Monthly 1995-2004 Yes Yes Yes CIMIS data available with discontinuities, used mainly to impute missing 

NOAA station data. 

5 Monthly 1995-2004 No Yes Yes High quality NOAA data found and averaged over 3 stations spanning 

service area. 

6 Monthly 1995-2004 No Yes Yes Fairly high quality NOAA data found from single station.   

7 Monthly 1995-2004 No Yes Yes CIMIS data available with severe discontinuities, used mainly to impute 

missing NOAA station data. 

8 Monthly 1999-2004 No Yes Yes Agency did not provide data going back to 1995. Production and population 

data have anomalies—agency dropped from analyses. 

9 Monthly 1995-2004 No Yes Yes Missing weather data in primary NOAA station imputed using secondary 

station. 

10 Monthly 1995-2004 Yes Yes Yes Closest two CIMIS stations suffer from discontinuities, but another nearby 

CIMIS station, highly correlated with the closest two, available.  NOAA 

station available with high quality data. 
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Table 2 Correlation between monthly NOAA and PRISM data 

Supplier ID Temperature correlation Rainfall correlation 

1 0.99 0.99 

2 0.98 0.96 

3 0.93 0.88 

4 0.98 0.84 

5 0.99 0.99 

6 0.98 0.97 

7 0.96 0.98 

9 0.99 0.98 

10 0.95 0.92 

Overall 0.96 0.94 
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4 Estimating the Relationship between Production and 

Weather 

4.1 The Importance of Peaking Factor 

The previous section established the feasibility of using PRISM weather 
data to weather normalize monthly production.  We now turn to 
describing the details of a methodology with statewide applicability for 
accomplishing this goal. 
 
We recognize that each supplier’s mix of weather-sensitive and weather-
insensitive end uses is different; therefore, the impact of weather on total 
production cannot be identical across suppliers.  Suppliers, however, do 
not always have good data to isolate these two types of end uses, so a 
weather normalization scheme that relies on the availability of such 
disaggregate data cannot succeed.  Alternatively, one could collect 
supplier characteristics that correlate with weather-sensitive end-uses, 
such as irrigated landscape per capita, intensity of commercial air-
conditioning, and so on, but these too are difficult to obtain in practice.  
Thus, we focused on a supplier’s peaking factor as a way of scoring how 
suppliers rank relative to one another in terms of the proportion of total 
use that is accounted for by weather-sensitive end uses.  For peaking 
factor to work as a scoring variable, however, it must have a consistent 
relationship with the variation in weather impacts across suppliers.  
Whether such a relationship exists was tested in several ways by first 
running separate models for each supplier.   
 
As mentioned earlier, California has water suppliers with summer-to-
winter monthly production ratios (peaking factor) extending to 5 and a 
few beyond 5, but our phase I sample only included suppliers with 
peaking factors under 3.  While this was adequate for assessing efficacy of 
PRISM weather data, it was inadequate as far as developing a 
methodology with statewide applicability was considered.  The strength 
of production’s relationship with weather ought to vary as a function of 
the proportion of total production that is accounted for by weather 
sensitive end uses.  To test and account for this possibility, and thereby 
arrive at a robust framework with statewide applicability, the original 
sample was supplemented with additional suppliers with significantly 
higher peaking factors.  Thus, Section 4’s analyses are based upon a total 
of 18 suppliers, 9 from phase I and an additional 9 from phase II. 
 
While it is intuitive to expect that weather’s impact upon production 
ought to scale positively with respect to a supplier’s peaking factor, the 
exact nature of this relationship is not obvious.  Should these weather 
effects scale linearly, logarithmically, or in some other way?  To shed light 
on this, we offer a thought experiment. 
 



 

 
4. Estimating the Relationship Between Production and Weathers  12  

Imagine several suppliers with 1 unit of non-weather sensitive demand, 
but progressively higher levels of weather sensitive demands (Table 3).  
Assume supplier B, at the peak of summer, uses an additional 1 unit of 
water in a normal year to meet its weather sensitive demand.  If so, 
supplier B would be deemed to have a peaking factor of 2.   Supplier C 
uses an additional 2 units of water in a normal year to meet its maximum 
summer demand, leading to a peaking factor of 3, and so on.  Now let’s 
ask by how much total summer demand would change if reference ETo 
were higher by 10% relative to normal.  In the case of supplier B, weather 
sensitive use would increase from 1 to 1.1 units, leading to a 5% (2.1/2) 
increase in total summer demand relative to a normal year.  In the case of 
supplier C, weather sensitive use would increase from 2 to 2.2 units, 
increasing total summer demand by 6.7% (3.2/3), and so on. 
 
From this thought experiment, it is also easy to see that weather’s impact 
is not a function of average GPCD holding peaking factor constant.  For 
example, if another hypothetical supplier B1 had an insensitive water 
demand of 2 units and summer weather sensitive demand of an 
additional 2 units, its average GPCD would be double that of supplier B, 
but the peaking factor would be the same.  A 10% hotter year would raise 
their total summer demand by exactly the same 5% even though their 
average GPCDs were quite different.  In other words, for scaling the 
impact of weather on production, the critical variable is peaking factor, 
not average GPCD. 
  
 

Table 3 Theoretical relationship between peaking factor and 

weather's impact on total demand 

 

 

 

 

Supplier 

 

 

Weather 

insensitive 

demand 

 

Summer 

weather 

sensitive 

demand 

 

 

Total 

summer 

demand 

 

 

 

Peaking 

factor 

Percent 

increase 

in total 

summer 

demand 

 

 

1- 

(1/peaking 

factor) 

A 1 unit 0 unit 1 units 1 0.0% 0.00 

B 1 1 2 2 5.0% 0.50 

C 1 2 3 3 6.7% 0.67 

D 1 3 4 4 7.5% 0.75 

E 1 4 5 5 8.0% 0.80 

F 1 5 6 6 8.3% 0.83 

G 1 6 7 7 8.6% 0.86 

H 1 7 8 8 8.8% 0.88 

I 1 8 9 9 8.9% 0.89 

J 1 9 10 10 9.0% 0.90 
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Figure 1 shows a plot of the increase in total summer demand by peaking 
factor that would result from weather being 10% hotter than normal.  One 
can see that the relationship is highly nonlinear.  At a peaking factor of 1 
(indicating zero weather sensitive demand), the impact of weather is zero 
as one would expect.  And as peaking factors continue to increase, 
indicating a higher proportion of weather-sensitive uses, the impact of a 
10% increase in reference ETo plateaus at 10%.   In other words, if total 
demand comprised only of irrigation and weather was 10% hotter than 
normal, then total demand would also be 10% greater than normal.  
 
Modeling this nonlinear relationship between peaking factor and 
weather’s impact on demand would be significantly easier if the peaking 
factor variable could somehow be transformed to linearize the 
relationship.  This is accomplished by creating a new variable (1-
(1/peaking factor)), which as Table 3 shows scales linearly with the 
expected percentage impacts on total production.  This fundamental 
insight about how to transform peaking factors proved very useful for the 
purpose of model specification.  
 
 
 

 

Figure 1 Nonlinear relationship between weather's impact and 

peaking factor 
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But, do the actual data support expectations from the above thought 
experiment?  Yes, they do.  To test for this, we ran separate models for 
each supplier two different ways; first to estimate how rainfall adjusted 
reference ETo impacts production; second, how temperature and rainfall 
impact production.  The model coefficients (one per supplier) from the 
first set of models are plotted by the supplier’s peaking factor (Figure 2) 
and by the transformed peaking factor (Figure 3).  These supplier-specific 
models also yield the peaking factors.  The model coefficients can be 
interpreted as the percent change in monthly production from a 1 inch 
deviation in rainfall adjusted reference ETo.  At a coefficient equal to 0.1, 
a 1 inch positive deviation can be expected to raise monthly production 
by roughly 10 percent (e0.1-1), and so on. 
 
As expected, Figure 2 indicates a nonlinear relationship, which becomes 
linear in Figure 3 (with a correlation equal to 0.77).  It can also be verified 
that a best-fit straight line estimated for Figure 3’s data predicts a zero 
weather impact at a peaking factor of one, or at a transformed peaking 
factor of zero (Table 4 shows that the estimated intercept is statistically 
insignificant from zero).  Our simple thought experiment anticipates all 
three outcomes.  These simple plots and tests thus bolster our confidence 
in the use of transformed peaking factors to scale weather impacts across 
suppliers with different mixes of end uses and resultant demand profiles. 
 
 

 

Figure 2 Supplier specific weather impacts as captured by rainfall 

adjusted reference ETo plotted by peaking factor 
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Figure 3 Supplier specific weather impacts as captured by rainfall 

adjusted reference ETo plotted by the transformed peaking factor 

 
 
 

Table 4 Best fit linear regression of Figure 3's data 

Dependent variable – Model coefficients in Figure 3 
Independent Variable Coefficient 

(Standard Error) 

 

t-statistic 

Transformed peaking factor 0.229 

(0.048) 

4.77† 

Intercept -0.026 

(0.031) 

-0.84‡ 

NOTE: Transformed peaking factor = 1-(1/peaking factor) 

 †Significant at 1% level 

 ‡Insignificant               
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In the second set of supplier-specific models, we also examined how the 
impact of temperature and rainfall scales with respect to transformed 
peaking factors, since weather normalization on the basis of temperature 
and rainfall is also a question of interest.  The plots (Figures 4 & 5) show 
that temperature effects scale linearly with respect to the transformed 
peaking factors, but rainfall has a weaker relationship albeit in the right 
general direction.  This is a key reason why we think using rainfall 
adjusted reference ETo to weather normalize monthly production is a 
more reliable technique, since the effect of rainfall can be subsumed into 
the effect of reference ETo, both theoretically and empirically.  But 
ultimately the difference between the two approaches is small, as 
sensitivity analyses presented later show. 
 
The above discussion should also make clear why weather normalization 
on the basis of annual data is infeasible.  Because peaking factors are a 
key input for our methodology, working with monthly data is necessary.      
 
 
 

 

Figure 4 Supplier specific temperature impacts plotted by the 

transformed peaking factor 
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Figure 5 Supplier specific rainfall impacts plotted by the transformed 

peaking factors 

 

4.2 The Estimated Impact of Weather 

Having verified that the transformed peaking factor is a suitable scaling 
variable for adjusting weather response across different suppliers, we 
proceeded to estimate a single model that pools data across all 18 test 
suppliers (Appendix A describes the specification, estimation and 
sensitivity analyses of the pooled model in detail).  A pooled model, 
because of greater sample size, allows for the estimation of weather 
impacts with greater precision.  Furthermore, pooling of the data allows 
us to test for seasonal variation in weather response, which is difficult to 
do in a precise way using data only from a single supplier.  These 
analyses suggest that a year can be broken into three seasonal groupings, 
November through March, April through June, and July through October.  
Weather impacts across months within a seasonal grouping were found 
to be comparable.      
  
In the pooled models, the impact of weather was modeled in two 
different ways; one using temperature and rainfall; the other using 
rainfall adjusted reference ETo.  All three weather measures were 
constructed using data obtained from PRISM. 
 
As mentioned earlier, the independent effect of rainfall does not show as 
tight a relationship with transformed peaking factors, but temperature 
does.  But, to weather normalize on the basis of temperature and rainfall 
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requires using both variables in the model.  In the reference ETo and 
rainfall model, we can choose to model these two effects independently, 
or combine them into a single measure—rainfall adjusted reference ETo.  
Given that the independent effect of rainfall does not scale tightly with 
transformed peaking factors, but the effect of rainfall adjusted reference 
ETo does, we feel the latter measure ought to be favored. 
 
Table 5 shows results from the pooled statistical models.  The table shows 
how deviations in temperature and rainfall, or rainfall adjusted reference 
ETo influence monthly production by season and peaking factor.  So, for 
example, at a peaking factor of 2, a 1 degree positive deviation in 
temperature can be expected to raise monthly production by 1.26% 
during the months of November through March; by 1.32% during the 
months of April through June; and by 0.7% during the months of July 
through October.  A greater than average rainfall has the opposite effect, 
lowering demand, hence production.  A 1” greater rainfall in a month 
relative to what would be considered normal for that month reduces 
production by 0.31% if the month in question lies between November and 
March; by 3.86% during the months of April, May and June; and by 2.16% 
for the months July through October.  Negative deviations would have 
the opposite effect.  The magnitude of these weather impacts increases 
with peaking factor, but at a declining rate per our earlier discussion. 
 
This pattern makes intuitive sense.  Extra rain during the traditional rainy 
months has much less impact on perceptions than extra rain when one 
doesn’t normally expect much.  Similarly, unseasonably high 
temperatures have the greatest impact when one normally expects cool 
temperatures. 
 
Table 5 also shows the impact of weather when weather is captured via 
rainfall adjusted reference ETo.  These impacts are greater in percentage 
terms than the one for temperature because a 1”deviation in monthly 
reference ETo is of far greater consequence than a 1 degree deviation in 
monthly temperature.  But, otherwise the pattern is comparable with 
weather deviations having the greatest impact during the spring season, 
just as they do in the temperature and rainfall scheme. 
 
For deriving rainfall adjusted reference ETo, we subtracted 30% of 
monthly rainfall from monthly reference ETo, placing a floor of zero on 
the net result to prevent rainfall adjusted reference ETo from taking on 
negative values.3  Assuming that 30% of monthly rainfall is effective gave 
us a better model fit in Figure 3 than the usual 20-25% assumption that 
landscape professionals use.  This is not entirely surprising since we are 
talking about effective rainfall at the supplier level, not just in the context 
of irrigation.  One can hypothesize that rainfall at the supplier level may 

                                                 
3
 Rainfall adjusted ETo = maximum(0, (ETo – 0.3 × rainfall)) 
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have higher effectiveness since it probably also substitutes for sidewalk 
cleaning in addition to irrigation.  Or, it may be that landscape 
professionals have traditionally underestimated the effect of rainfall. 
 
 

Table 5 Estimated weather impacts by season and peaking factor 

Peaking 

factor 

Nov-Mar Apr-Jun Jul-Oct Nov-Mar Apr-Jun Jul-Oct 

Weather Normalization based upon temperature and rainfall 

Per 1
o
 temperature deviation Per 1” rainfall deviation 

1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

2 1.26% 1.32% 0.70% -0.31% -3.86% -2.16% 

3 1.69% 1.77% 0.93% -0.42% -5.11% -2.87% 

4 1.90% 1.99% 1.05% -0.47% -5.73% -3.22% 

5 2.03% 2.13% 1.12% -0.50% -6.10% -3.44% 

6 2.11% 2.22% 1.16% -0.52% -6.35% -3.58% 

 Weather normalization based upon rainfall adjusted reference ETo 

 
Per 1

”
 deviation 

 1 0.00% 0.00% 0.00% 

   2 5.26% 11.25% 6.03% 

   3 7.07% 15.27% 8.13% 

   4 7.99% 17.30% 9.19% 

   5 8.54% 18.60% 9.83% 

   6 8.91% 19.44% 10.26% 

    
 
 

4.3 Sensitivity Analyses Using Post-Baseline Years 

In this section, we explore sensitivity of weather-normalized GPCD 
estimates with respect to alternative sources of weather data as well as 
alternative measures used to depict weather.  This is done by predicting 
what production would have been during the three post-baseline years of 
2006, 2007 and 2008 if weather during those years had been the same as it 
was during the baseline period.  This requires working with Table 5’s 
factors in reverse to correct actual production data.  Appendix B describes 
these computations in greater detail. 
 
We offer two comparisons.  First we compare, using data from all 18 
suppliers, how weather normalized GPCDs for the three post-baseline 
years compare when either temperature and rainfall, or rainfall adjusted 
reference ETo, is used to perform the weather normalization.  In this first 
comparison, all weather data are drawn from PRISM, and the comparison 
tests for sensitivity to alternative measures used to depict weather.  Then 
for the subset of 9 Phase I suppliers for whom we also have temperature 
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and rainfall data from NOAA, we compare the performance of NOAA to 
PRISM data.  Although it was shown earlier that temperature and rainfall 
data from NOAA and PRISM correlate strongly, this second sensitivity 
analysis offers further proof about the efficacy of using PRISM as a 
weather data source. 
 
Table 6 shows the results of the first sensitivity analyses.  In general, the 
results are comparable regardless of whether temperature and rainfall, or 
rainfall adjusted reference ETo, are used to perform the weather 
normalization.  Sometimes one weather measure leads to a slightly higher 
estimate, and at other times, the other.  There is no evidence of one 
weather measure consistently under or over-predicting relative to the 
other measure.  That said, the normalization based upon rainfall adjusted 
reference ETo may be more reliable because the independent effects of 
rainfall do not scale as well as that of temperature (in the temperature 
and rainfall model) with respect to transformed peaking factors. 
 
Table 7 shows the results of the second sensitivity analyses, the one that 
assesses the impact of using NOAA versus PRISM temperature and 
rainfall data.  For generating this table the models were rerun on only the 
9 Phase I suppliers, for each source of weather data.  The model 
generated weather effects were then used to normalize production in the 
three post-baseline years.  Except for Supplier #2, once again the weather 
normalized GPCDs are very close to one another, adding further weight 
to the acceptability of PRISM as a weather data source.  For Supplier # 2, 
CIMIS data were used instead of NOAA data since that latter were 
unavailable, which may explain the slightly higher discrepancy. 
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Table 6 Sensitivity to alternate weather measures from PRISM  

Supplier 

Baseline 

GPCD 

Peaking 

factor Year 

Actual 

GPCD 

Temp. 

& rainfall 

normalized 

GPCD 

Rainfall 

adjusted 

ref. ETo 

normalized 

GPCD 

1 

  

2006 195 199 201 

1 209 2.9 2007 188 185 185 

1 

  

2008 195 189 189 

2 

  

2006 165 163 164 

2 166 2.2 2007 173 170 171 

2 

  

2008 163 158 160 

3 

  

2006 121 124 124 

3 124 1.8 2007 130 132 132 

3 

  

2008 128 129 129 

4 

  

2006 139 138 137 

4 145 2.0 2007 141 142 141 

4 

  

2008 134 133 132 

5 

  

2006 142 140 140 

5 154 1.7 2007 146 146 144 

5 

  

2008 140 138 138 

6 

  

2006 155 157 157 

6 165 2.0 2007 152 152 150 

6 

  

2008 144 143 141 

7 

  

2006 175 170 167 

7 181 2.2 2007 180 178 175 

7 

  

2008 166 161 159 

9 

  

2006 159 162 162 

9 174 2.3 2007 164 164 163 

9 

  

2008 159 158 157 

10 

  

2006 122 121 121 

10 133 1.6 2007 122 122 121 

10 

  

2008 110 109 109 

11 

  

2006 334 327 328 

11 349 5.2 2007 338 329 327 

11 

  

2008 343 320 321 

12 

  

2006 313 317 318 

12 323 4.4 2007 332 333 333 

12 

  

2008 342 336 334 

13 

  

2006 406 409 409 

13 380 3.2 2007 480 479 476 

13 

  

2008 462 454 455 
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Supplier 

Baseline 

GPCD 

Peaking 

factor Year 

Actual 

GPCD 

Temp. 

& rainfall 

normalized 

GPCD 

Rainfall 

adjusted 

ref. ETo 

normalized 

GPCD 

14 

  

2006 210 211 212 

14 266 6.0 2007 230 228 231 

14 

  

2008 240 234 232 

15 

  

2006 285 287 289 

15 297 4.1 2007 270 267 270 

15 

  

2008 275 269 268 

16 

  

2006 444 445 448 

16 516 4.7 2007 487 487 491 

16 

  

2008 498 487 484 

18 

  

2006 225 225 225 

18 233 2.7 2007 229 232 231 

18 

  

2008 207 204 207 

19 

  

2006 383 384 381 

19 411 5.0 2007 408 403 402 

19 

  

2008 408 405 407 

20 

  

2006 314 316 314 

20 302 3.3 2007 321 317 315 

20 

  

2008 304 299 295 
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Table 7 Sensitivity to alternate sources of weather data (PRISM vs. 

NOAA) 

Supplier 

Baseline 

GPCD 

Peaking 

factor Year 

Actual 

GPCD 

Temp. 

& rainfall 

normalized 

GPCD 

(PRISM) 

Temp. 

& rainfall 

normalized 

GPCD 

(NOAA) 

1 

  

2006 195 198 199 

1 209 2.9 2007 188 185 185 

1 

  

2008 195 189 188 

2 

  

2006 165 162 164 

2 166 2.2 2007 173 170 175 

2 

  

2008 163 159 160 

3 

  

2006 121 123 121 

3 124 1.8 2007 130 132 130 

3 

  

2008 128 129 127 

4 

  

2006 139 138 138 

4 145 2.0 2007 141 142 141 

4 

  

2008 134 133 132 

5 

  

2006 142 140 140 

5 154 1.7 2007 146 146 146 

5 

  

2008 140 138 139 

6 

  

2006 155 157 157 

6 165 2.0 2007 152 152 151 

6 

  

2008 144 143 142 

7 

  

2006 175 171 173 

7 181 2.2 2007 180 178 178 

7 

  

2008 166 161 164 

9 

  

2006 159 161 161 

9 174 2.3 2007 164 164 164 

9 

  

2008 159 159 157 

10 

  

2006 122 121 121 

10 133 1.6 2007 122 122 122 

10 

  

2008 110 109 109 
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5. Conclusions 

The analyses presented here test several questions pertaining to weather 
normalization.   The first and foremost question was identifying a source 
of reliable weather data.  We compare two different sources of weather 
data for this study, NOAA and PRISM.  PRISM is a powerful new tool 
developed by the DWR that can provide temperature, rainfall, and 
reference ETo data from 1990 until present for all regions of California.  
Data are available for each 4x4 kilometer tile in California; there are over 
26,000 such tiles covering the length and breadth of the state.  There was a 
great deal of interest in assessing whether PRISM can serve as a one-stop 
shop for weather data.  Temperature and rainfall data from these two 
sources show a very high level of correlation, suggesting that PRISM is 
indeed a reliable source of weather information. 
 
Weather normalization is likely to proceed better if the same source of 
weather data is used for estimating the statistical models as for 
completing the normalization analyses for each supplier.  Our analyses 
suggest that PRISM can serve as just such a source. 
 
Second, there was a high degree of interest in assessing whether annual 
production can be reliably weather normalized since it would be an easy 
method to implement.  But the statistical models failed to support this 
line of thinking since no statistically significant relationship could be 
detected between production and temperature or production and 
reference ETo at the annual level.  The models, however, do offer strong 
support for attempting weather normalization at the monthly level.  The 
approach described here shows the feasibility of using summer-to-winter 
peaking factors to capture the variation in weather’s impact across 
different suppliers, obviating the need to collect detailed supplier 
characteristics.   
 
We also compared two different approaches to weather normalization; 
one relying on temperature and rainfall; the other relying on rainfall 
adjusted reference ETo.  Although the sensitivity analyses do not indicate 
large differences in the outcomes from either approach, we feel the latter 
approach is likely to prove more reliable in practice.  The impact of 
rainfall adjusted reference ETo scales well with supplier peaking factors.  
In the temperature and rainfall approach, only temperature effects scale 
well with peaking factors, rainfall less so.  Thus a methodology that does 
not require estimating the independent effect of rainfall on production is 
likely to be more reliable, and the weight of the empirical evidence 
presented earlier certainly supports this assertion. 
 
The model estimated correction factors are not terribly sensitive to a few 
instances of bad weather data since they are estimated from multiple 
agencies.  But, at the time of applying this methodology, one is working 
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only with 12 data points per year.  Bad data for one or two months could 
have a much greater influence on a specific agency’s GPCD estimate, so 
great care needs to be exercised in this regard. 
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Appendix A  Model specification and estimation 

A.1 Model Specification 

Household billing data are more complicated to model because of 
staggered billing cycles.  These issues do not arise with monthly 
production data as calendar reporting periods can be made consistent 
across agencies.  A key driver of production growth over time is 
population growth.  At a first order of approximation, production growth 
over time ought to be proportional to population growth, suggesting a 
logarithmic relationship between the two variables.  The basic monthly 
statistical model implied by such considerations is expressed in Eq. 1 
below.  The annual model, a simplified version of the monthly model, is 
discussed later. 
 
                                                  …. (1) 
 
Where, 
prod stands for production for agency (i) in month (t) 
pop indicates corresponding population   
mt a set of 12 indicators, one for each month 
wt deviation in monthly weather relative to baseline average 
 
And the model parameters have the following interpretation, 
α scaling constant, captures overall average 
β indicates percent increase in production for every 1% increase in 

population 
γt captures month-to-month variation in monthly production,  

assuming average weather prevails during every month  
δt captures variation in monthly production due to weather 

deviation from baseline averages 
θi indicator variable for agency (i) that captures variation in 

production levels across agencies 
εit model error  
 
The primary parameters of interest are the coefficients on the weather 
deviation variables (δt), which yield the correction factors to be used for 
weather normalization. 
 
The annual model is simply the aggregated version of the monthly model 
described above.  In this case, annual production replaces monthly 
production on the left-hand-side of the equation, annual mean population 
replaces the monthly mean population, the 12 monthly indicators (mt) are 
eliminated altogether, and the weather-deviation variables are derived at 
the annual instead of monthly level.  So, instead of potentially having 12 
monthly correction factors for temperature and 12 for rainfall, the annual 
model boils them down to 1 each.  The annual model is much simpler in 
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structure, thus easier to implement in practice—the question is does it 
work as well as the more detailed monthly model?  

A.2 Estimation and Sensitivity Analyses 

The basic structure of Eq. 1 can be refined and modified in several ways—
and these refinements were tested during the sensitivity analysis phase to 
assess the robustness of the basic specification.  Examples of the 
refinements that were tested include: 

 Allowing the relationship between production and population (β) 
to vary by supplier instead of imposing a common relationship, 
and including additional time-trend variables for each supplier. 

 Allowing the monthly indicator-variable coefficients (γt) to take 
different values by supplier instead of imposing a uniform 
seasonal pattern across all suppliers. 

 Capturing weather deviations in two alternative ways; (1) using 
deviations in temperature and rainfall; and (2) using deviations in 
rainfall adjusted reference ETo. 

 Testing whether logarithmically transforming weather variables 
before deriving the deviations from baseline averages improves 
the model fit. 

 Assessing whether the correction factors (δt) vary significantly by 
month, in which case a total of 24 factors are required (12 for 
temperature and 12 for rainfall, or 12 for rainfall adjusted 
reference ETo), or whether these can be pared down to monthly 
groupings to simplify the methodology. 

 Assessing whether weather impacts scale across different 
suppliers in a predictable way corresponding to a supplier’s 
peaking factor. 

 Testing for heteroscedasticity and autocorrelation in the model 
error (εit) and correcting for it. 

 

A.3 Scaling Weather Impacts According to Peaking Factor 

We recognize that each supplier’s mix of weather-sensitive and weather-
insensitive end uses is different; therefore, the impact of weather on total 
production cannot be identical across suppliers.  Suppliers, however, do 
not always have good data to isolate these two types of end uses, so a 
weather normalization scheme that relies on the availability of such 
disaggregate data cannot succeed.  Alternatively, one could collect 
supplier characteristics that correlate with weather-sensitive end-uses, 
such as irrigated landscape per capita, commercial air-conditioning, and 
so on, but these too are difficult to obtain in practice.  Thus, we focused 
on a supplier’s peaking factor as a way of scoring how suppliers rank 
relative to one another in terms of the proportion of total use that is 
accounted for by weather-sensitive end uses. 
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For peaking factor to work as a scoring variable, however, it must have a 
consistent relationship with the variation in weather impacts across 
suppliers.  Whether such a relationship exists was tested in several ways 
by first running separate models for each supplier.  These separate 
models were also used to estimate the peaking factors in a normal 
weather year.  The model generated peaking factors correlate very highly 
with simply taking the ratio of highest and lowest production months per 
year, and then averaging these ratios across all years in the baseline.  But 
the model generated peaking factors are conceptually cleaner, and 
improve the fit somewhat in Figure 3.  The results of these analyses were 
discussed in Section 4.  All the disparate pieces of evidence generated 
from these analyses bolster the case for using rainfall adjusted reference 
ETo to perform the weather normalization. 
 
For deriving rainfall adjusted reference ETo, we subtracted 30% of rainfall 
from reference ETo, placing a floor of zero on the net result to prevent 
rainfall adjusted reference ETo from taking on negative values.  
Assuming 30% effective rainfall improved the model fit in Figure 3.  
While this effective rainfall parameter may appear somewhat higher than 
what most landscape professionals use, it must be remembered that we 
are talking about effective rainfall at the level of a supplier, not just in the 
context of irrigation.  One can hypothesize that rainfall at the supplier 
level may have higher effectiveness since it probably also substitutes for 
sidewalk cleaning in addition to irrigation. 
 

A.4 Model Results 

Table 8 shows the key parameters of interest for the basic monthly model 
after correcting model error for autocorrelation and heteroscedasticty.  
This model is based on a total of 18 suppliers, 9 from phase I and 9 from 
phase II. 
 
The fit of this model appears very good (adjusted R-square=0.95) and all 
the coefficients are statistically significant.  The coefficient on the 
population variable is very close to 1, as we would expect:  As per the 
estimated coefficient, 1% population growth led to 0.98% growth in 
production across these test agencies during the baseline period.  The 
monthly indicator variables exhibit the expected pattern, with minimum 
production occurring in February and maximum in July and August.  To 
interpret the monthly indicator coefficients in percentage terms they first 
need to be exponentiated.  So, for example, on average February’s 
production was 10.1% (e-0.107-1) below January’s (the reference month), 
while July’s was 95.6% (e0.671-1) above. 
 
Next are shown the weather impact coefficients.  The estimated 
coefficients on the weather deviation variables have been grouped into 
three seasonal categories because the magnitude of the monthly effects 
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appeared similar within each category.  The weather variables enter the 
models as a product of the weather variable and the transformed peaking 
factor to permit weather effects to vary across different suppliers.  These 
coefficients also need to be exponentiated to give them a percentage 
interpretation, but for small coefficients this makes almost no difference.  
So, for example at a transformed peaking factor of 1, during the months 
of November through March, a 1 inch rise in rainfall adjusted reference 
ETo relative to what is considered normal leads to a 9.7% (e0.093-1) 
increase in monthly production, and vice versa.  During April through 
June, this relationship strengthens to 19.8% for every 1 inch deviation, 
while for the remainder of the year it weakens to roughly 12.1%.  At other 
values of the transformed peaking factors, these would have to be 
multiplied by the coefficients before exponentiating. 
 

Table 8 Estimated basic monthly model 

Dependent variable – Ln(monthly production) 

Variable Coefficient Std. error t-statistic 

Ln(population) 0.983 0.086 11.5 

January ---   

February -0.107 0.009 -11.3 

March 0.082 0.014 6.0 

April 0.230 0.014 17.0 

May 0.434 0.014 30.4 

June 0.554 0.014 40.5 

July 0.671 0.012 54.3 

August 0.665 0.012 54.6 

September 0.559 0.012 46.6 

October 0.437 0.012 37.0 

November 0.156 0.011 13.6 

December 0.047 0.010 4.9 

Rainfall adjusted ref. ETo deviation x TPF
‡ 

  (Nov. through Mar.) 
0.093 0.009 9.7 

Rainfall adjusted ref. ETo deviation x TPF 

  (Apr. through Jun.) 
0.181 0.014 13.4 

Rainfall adjusted ref. ETo deviation x TPF 

  (Jul. through Oct.) 
0.114 0.009 12.4 

Constant -5.15 0.868 -5.9 

Adjusted R-square 0.95   

‡TPF, or transformed peaking factor, equals (1-(1/peaking factor)) 

NOTE:  All coefficients are statistically significant at the 1% level.  Agency specific 

fixed effects are included in the model.  Error autocorrelation and heteroscedasticity 

corrected.   

 

 
The coefficients reported in Table 8 are not the ones that we ultimately 
use for deriving weather-normalized GPCDs.  Table 8 has been provided 
only to aid the reader’s understanding of the model structure and 
interpretation of the coefficients.  As mentioned earlier, the basic model 
was further relaxed by allowing the relationship between production and 
population, and the monthly pattern to vary by agency.  This does not 
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alter the weather coefficients much, but we should prefer these for the 
purpose of weather normalization.  We also examined whether 
logarithmically transforming the weather variables improves the fit, but it 
did not do so, so we have not used that option as it is more difficult to 
explain and understand. 
 
 

Table 9 Rainfall adjusted reference ETo coefficients from relaxed 

version of basic model using PRISM data 

Dependent variable – Ln(monthly production) 

Variable Coefficient 
Std. 

error 
t-statistic 

Rainfall adjusted ref. ETo deviation x TPF
‡ 

  (Nov. through Mar.) 
0.102 0.006 16.1 

Rainfall adjusted ref. ETo deviation x TPF
 

  (Apr. through Jun.) 
0.213 0.009 24.4 

Rainfall adjusted ref. ETo deviation x TPF
 

  (Jul. through Oct.) 
0.117 0.006 18.6 

Adjusted R-square 0.98   

‡TPF, or transformed peaking factor, equals (1-(1/peaking factor)) 

NOTE:  All coefficients are statistically significant at the 1% level.  Agency specific 

fixed effects are included in the model.  Error autocorrelation and heteroscedasticity 

corrected.   

 

 

Table 10 Temperature and rainfall coefficients from relaxed version 

of basic model using PRISM weather data 

Dependent variable – Ln(monthly production) 

Variable Coefficient Std. error t-statistic 

Temperature deviation x TPF
‡ 

  (Nov. through Mar.) 
0.025 0.001 16.2 

Temperature deviation x TPF 

  (Apr. through Jun.) 
0.026 0.002 15.6 

Temperature deviation x TPF 

  (Jul. through Oct.) 
0.014 0.001 12.3 

Rainfall deviation x TPF 

  (Nov. through Mar.) 
-0.006 0.002 -3.8 

Rainfall deviation x TPF 

  (Apr. through Jun.) 
-0.079 0.006 -12.1 

Rainfall deviation x TPF 

  (Jul. through Oct.) 
-0.044 0.004 -10.5 

Adjusted R-square 0.98   

‡TPF, or transformed peaking factor, equals (1-(1/peaking factor)) 

NOTE:  All coefficients are statistically significant at the 1% level.  Agency specific 

fixed effects are included in the model.  Error autocorrelation and heteroscedasticity 

corrected.   

 

For the sake of brevity, Tables 9 and 10 only report weather coefficients 
from these relaxed versions of the basic model, which are then used in 
Section 4 to weather-normalize production data.  Table 9 uses rainfall 
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adjusted reference ETo to depict weather, while Table 10 uses 
temperature and rainfall.  In both cases, weather data are taken from 
PRISM. 
 
The coefficients in Table 9 are larger than those for temperature in Table 
10 because a 1 inch deviation in monthly reference ETo is of far greater 
consequence than a 1 degree deviation in monthly temperature. 
 
Figures 6 through 8 (based on Table 9’s underlying model) compare 
model predictions to actual monthly production for a low, medium, and 
high peaking factor supplier.  The high precision with which weather 
effects in Table 9 are estimated suggest that model predictions should 
compare well, and that is indeed borne out by these plots. 
 
 
 
 

 
 

Figure 6 Actual vs. model prediction for a low peaking factor supplier 
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Figure 7 Actual vs. model prediction for a medium peaking factor 

supplier 

 
 

 

Figure 8 Actual vs. model prediction for a high peaking factor 

supplier 
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A.5 How Does the Annual Model Perform? 

Given the salience of a supplier’s peaking factor in determining its 
weather response, it is easy to see why an annual approach is infeasible.  
And without disaggregate data by month, or finer, it is impossible to 
estimate this factor.  But, just to satisfy our curiosity we tried an annual 
model without including the peaking factor variable.  This type of annual 
model was not successful in detecting a statistically significant 
relationship between production and temperature or production and 
reference ETo, although the effects of rainfall were significant.  Therefore, 
weather normalization of annual data, while attractive for its simplicity, 
is not feasible. 
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Appendix B  Applying the methodology:  An example 

To describe the computations involved, we have taken one year’s data 
(2006) from one of the test agencies (Supplier #2) to illustrate the 
computations.  We use the rainfall adjusted reference ETo approach for 
the purpose of this illustration.  Table 11 shows rainfall adjusted reference 
ETo estimates by month for the year 2006, as well as averages from the 
baseline period, from which we derive the deviations between the 
compliance year and the baseline period.  
  
In January of 2006, for example, rainfall adjusted reference ETo was 0.365 
inches greater than the baseline average for this month.  This positive 
weather deviation would have raised production in January of 2006, but 
by how much?  That is obtained by taking the product of three variables, 
including the model coefficient for January, the transformed peaking 
factor, and the deviation between actual and baseline average weather as 
measured by rainfall adjusted reference ETo.  This product is then 
exponentiated to express the impact of the weather deviation in terms of 
a multiplier since the models use the logarithmic transform of monthly 
production as the dependent variable.  By what percentage did January’s 
weather deviation increase production?  This works out to 2.1% or a 
multiplier equal to 1.021 (e0.543 x 0.102 x 0.365).   
 
Had these deviations not occurred, our best estimate of what January 
2006 production would have been is actual production scaled back by 2.1%.  
Thus, normalized production is obtained by dividing actual production 
by the impact multiplier. 
 
Aggregating the weather-normalized monthly production estimates to 
the annual level and dividing by population and the number of days in 
the year then yields the weather-normalized GPCD. 
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Table 11  Monthly weather normalization:  An example of the computations involved 

 

Month 

Actual 

rainfall 

adjusted 

reference 

ETo 

Baseline 

average 

rainfall 

adjusted 

reference 

ETo 

Deviation in 

rainfall 

adjusted 

reference 

ETO 

Peaking 

factor 

Transformed 

peaking 

factor 

Model 

Coefficient 

Weather 

deviation 

impact 

multiplier 

Actual 

production 

Normalized 

production 

1 1.332 0.967 0.365 2.19 0.543 0.102 1.021 1170 1146 

2 1.202 0.937 0.265 2.19 0.543 0.102 1.015 1200 1183 

3 1.186 2.606 -1.419 2.19 0.543 0.102 0.924 1038 1123 

4 2.398 3.790 -1.392 2.19 0.543 0.213 0.851 1063 1249 

5 4.644 5.100 -0.456 2.19 0.543 0.213 0.949 1506 1588 

6 6.609 5.907 0.703 2.19 0.543 0.213 1.085 1876 1730 

7 7.665 6.875 0.790 2.19 0.543 0.117 1.052 2256 2145 

8 6.577 6.376 0.201 2.19 0.543 0.117 1.013 2097 2070 

9 5.163 4.848 0.315 2.19 0.543 0.117 1.020 1994 1954 

10 3.510 3.174 0.336 2.19 0.543 0.117 1.022 1721 1685 

11 2.523 1.850 0.673 2.19 0.543 0.102 1.038 1536 1480 

12 1.651 1.055 0.596 2.19 0.543 0.102 1.034 1310 1268 

   NOTES:  Transformed peaking factor = 1-(1/Peaking factor) 

                   Model coefficients are taken from Table 9. 


